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(57) ABSTRACT

A race detection mechanism can include running threads of a
multithreaded program on a processor, the program being
configured to produce locksets each of which indicate a set of
one or more locks that a thread holds at a point in time. The
mechanism can cause a performance monitoring unit
included in the processor to monitor memory accesses caused
by the threads and to produce samples based on the memory
accesses, the samples being indicative of an accessed
memory location. The mechanism can detect an existence of
a data race condition based on the samples and the locksets.
Detecting can include identifying a protected access to a
memory location by a first thread of the threads and identify-
ing an unprotected access to the memory location by a second
thread of the threads. The process selectively outputs an indi-
cation of the data race condition.

15 Claims, 7 Drawing Sheets

3057 | Run threads of a multithreaded program on a

processor, the program being configured to produce

locksets each of which indicate a set of one or more
locks that a thread holds at a point in time

3107 Cause a performance monitoring unit included in the
processor to monitor memory accesses caused by the
threads and to produce samples based on the memory
accesses, the samples being indicative of an accessed
memory location

3157 | Detect an existence of a data race condition
based on the samples and the locksets

3207 | Selectively output an indication
of the data race condition
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3057 | Run threads of a multithreaded program on a

processor, the program being configured to produce

locksets each of which indicate a set of one or more
locks that a thread holds at a point in time

310 Cause a performance monitoring unit included in the
processor to monitor memory accesses caused by the
threads and to produce samples based on the memory
accesses, the samples being indicative of an accessed
memory location

3151 Detect an existence of a data race condition
based on the samples and the locksets

3207 Selectively output an indication
of the data race condition

Fig. 3
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IP1: Lock (instrumented to produce a lock event)
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IP3: Unlock (instrumented to produce an unlock event)
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Fig. 4B
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TECHNIQUES AND SYSTEMS FOR DATA
RACE DETECTION

TECHNICAL FIELD

This patent document relates to detecting data races in
computer programs.

BACKGROUND

Multithreaded programming can increase the performance
of an application. For example, a multithreaded program,
when executed, can launch multiple threads to distribute
work, e.g., distribute the handling of incoming server
requests. Moreover, the dominance of concurrent processors,
such as multithreaded processors and multi-cored processors,
has made parallel programming advantageous to achieve
peak performance from modern systems. Parallel program-
ming can include generating a multi-thread program that
launches multiple threads on multiple cores when executed.
Multithreaded programming can be considerably more diffi-
cult to program than its single threaded counterpart. In addi-
tion to bugs common to sequential computer programs, mul-
tithreaded programming may produce bugs such as data
races, atomicity violations, deadlock, and live lock.

SUMMARY

This document describes data race detection technologies.
A described method for data race detection includes running
threads of a multithreaded program on a processor, the pro-
gram being configured to produce locksets each of which
indicate a set of one or more locks that a thread holds at a point
in time; causing a performance monitoring unit included in
the processor to monitor memory accesses caused by the
threads and to produce samples based on the memory
accesses, the samples being indicative of an accessed
memory location; detecting an existence of a data race con-
dition based on the samples and the locksets; and selectively
outputting an indication of the data race condition. Other
implementations can include corresponding systems, appa-
ratus, and computer programs, configured to perform the
actions of the methods, encoded on computer storage devices.

These and other implementations can include one or more
of'the following features. Detecting an existence of a datarace
condition can include identifying a protected access to a
memory location by a first thread of the threads and identify-
ing an unprotected access to the memory location by a second
thread of the threads. Implementations can include selecting
a sample of the samples and determining one or more addi-
tional memory accesses based on register file information
included in the selected sample and one or more associated
basic blocks of the program. The selected sample can corre-
spond to a memory reference instruction within the one or
more associated basic blocks. Detecting the existence of the
data race condition can include using the one or more addi-
tional memory accesses. Implementations can include
obtaining memory allocation events associated with the pro-
gram. Detecting the existence of the data race condition can
include using at least a portion of the memory allocation
events. Implementations can include controlling a sampling
rate of the performance monitoring unit based on an overhead
parameter. Implementations can include configuring a size of
a buffer of the performance monitoring unit to store a single
sample such that an interrupt occurs based on the perfor-
mance monitoring unit writing a single sample to the buffer.
Running the threads can include running multiple instances
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2

of the application on one or more servers. Detecting the
existence of the data race condition can include aggregating
performance monitoring unit data generated by running the
multiple instances of the application.

A system for detecting data races can include a computer
storage device having instructions stored thereon and a pro-
cessor coupled to the computer storage device, the processor
including a performance monitoring unit, where the instruc-
tions, when executed by the processor, cause the processor to
perform operations. The operations can include running
threads of a multithreaded program on the processor, the
program being configured to produce locksets each of which
indicate a set of one or more locks that a thread holds ata point
in time; causing the performance monitoring unit to monitor
memory accesses caused by the threads and to produce
samples based on the memory accesses, the samples being
indicative of an accessed memory location; detecting an
existence of a data race condition based on the samples and
the locksets; and selectively outputting an indication of the
data race condition. The detecting can include identifying a
protected access to a memory location by a first thread of the
threads and identifying an unprotected access to the memory
location by a second thread of the threads.

Particular embodiments of the subject matter described in
this document can be implemented so as to realize one or
more of the following advantages. A described data race
detection mechanism can be lightweight, non-invasive, and
usable in a production environment, e.g., a server that is
actively handling requests from customers. The described
data race detection mechanism can obtain memory addresses
via the performance monitoring unit, which is faster than
using instrumented memory operations, e.g., memory opera-
tions that are augmented with additional instructions to cap-
ture the memory addresses at run-time. The described data
race detection mechanism can dynamically adjust sampling
rates to meet latency requirements of a production environ-
ment.

The details of one or more embodiments of the subject
matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of monitoring data associated
with detecting a data race.

FIG. 2 shows an example of a data race detection system.

FIG. 3 shows an example of a data race detection process.

FIGS. 4A and 4B show an example of a signal skid prob-
lem.

FIG. 5 show the breakdown of different types of overheads
associated with a data race detection mechanism.

FIG. 6 shows an example of throughput performance for a
benchmark application being monitored by a data race detec-
tion mechanism.

FIG. 7 shows another example of throughput performance
for a benchmark application being monitored by a data race
detection mechanism.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Computer programming bugs, such as data races, are dif-
ficult to debug and are a source of unreliability in multi-



US 9,135,082 B1

3

threaded applications. A data race occurs, for example, when
multiple threads access the same location without proper
synchronization, and at least one of the accesses is a write.
Data races are difficult to diagnose for two primary reasons.
First they can manifest under certain, potentially rare, thread
interleaving conditions. This can make data race bugs diffi-
cult to reproduce. Second, the actual data race typically only
corrupts data. User visible effects, such as program crashes or
corrupted output, may occur much later making it difficult to
isolate where in the computer program the race actually
occurred. Traditional debuggers may prove inadequate in
locating a data race. Tools developed both in industry and
academia have been proposed to help find data races. Data
races detection tools can analyze information on an applica-
tion’s synchronization operations and memory reference
addresses to detect a data race. Traditional race detection
tools use instrumented synchronization operations and
instrumented memory reference operations. The tools collect
data from the instrumentation and apply race detection algo-
rithms for online or postmortem analysis. Such tools can
introduce significant runtime overhead, can be extremely
invasive, or both, which can render the tools unsuitable for use
in production systems. Consequently, these tools are typically
used during application testing where many data races go
undetected due to limited input sets and incomplete modeling
of the real runtime environment.

This document describes, among other things, a data race
detection (DRD) mechanism based on a processor’s perfor-
mance monitor unit (PMU). The DRD mechanism can be
used in production systems that are sensitive to overhead. The
PMU can support a very low overhead sampling mechanism
and record memory address information when a memory
operation is sampled by PMU. DRD mechanisms that use
PMU samples to obtain addresses used by memory reference
operations and determine lockset information from instru-
mented lock and unlock operations. A lockset denotes the set
of'locks that a thread currently holds at a particular program
point during the execution. A DRD mechanism can combine
data from the PMU samples and lockset information to detect
data races. In some implementations, the DRD mechanism
can include a self-monitoring routine to determine virtual
memory addresses based on memory reference data collected
by the processor’s PMU. During an offline analysis, the
mechanism can determine additional memory references
from the PMU data based on a static stimulation of at least a
portion of the application.

FIG. 1 shows an example of monitoring data associated
with detecting a data race. In this example, a process running
an application runs a first thread (T1) and a second thread
(T2). The first thread T1 performs a lock 105, a write 110 to
a memory location, an unlock 115, and a read 120. In some
implementations, a lock 105 operation is based on a lock
identifier. Based on a successful execution of the lock 105 by
the first thread T1, a subsequent lock to the same lock iden-
tifier in another thread will block until the first thread T1
executes the unlock 115. Other types of synchronization
operations (e.g., lock and unlock) are possible.

The second thread T2 performs a write 125 and a read 130.
A data race may happen if T1’s write 110 and T2’s write 125
are to the same memory location. Note that T2’s write 125 can
be before or after T1’s write 110, and the timing can be
different for each running of the application. As depicted by
FIG. 1, T1 performs a protected write to the memory location
(e.g., a write that is covered by lock and unlock operations),
whereas T2 performs an unprotected write to the memory
location (e.g., a write that is not covered by lock and unlock
operations). A DRD mechanism can cause a PMU to generate
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samples 140a, 1405, 140¢, 1404 for the memory operations
(e.g., write 110, read 120, write 125, and a read 130). In this
example, T1’s lock 105 and unlock 115 operations are instru-
mented to cause a logging mechanism to capture lockset
update events 150a, 1505 for the respective operations. The
DRD mechanism can analyze monitoring data, including the
samples 140a-d and the lockset update events 150a-b to
detect a data race.

FIG. 2 shows an example of a data race detection system. A
multithreaded program such as multithreaded application
205 is modified to interact with a DRD runtime library 210.
The library 210 includes a threading instrumentation library
215, sampling information collection module 225, and a log-
ging module 220. For example, the application 205 can be
modified to call one or more routines in the threading instru-
mentation library 215 to provide information that determines
locksets. The DRD runtime library 210 provides a lockset
based DRD algorithm that track memory allocation events,
memory reference events, lock events, unlock events, and
memory de-allocation events. Memory allocation instrumen-
tation can reduce the number of false positives in a DRD
mechanism. The logging module 220 can log events in one or
more file stored on a computer storage device 270. A logging
entry can include a record number, a thread id (tid), an event
type, and a stack trace for the event.

The operating system (OS) kernel 240 runs the application
205 on a processor 250. The processor 250 can include one or
more processor cores 255 and one or more PMUs 260. In
some implementations, the processor 250 runs two or more
threads of the multithreaded application 205 in parallel on
two or more processing cores. In some implementations, the
processor 250 performs context switches among two or more
threads of the multithreaded application 205. In some imple-
mentations, the core 255 includes the PMU 260. The sam-
pling information collection module 225 uses a system call
interface 230 to access PMU sampling data via the kernel 240.
The kernel 240 uses a PMU support kernel module to com-
municate with the PMU 260. A computer storage device 270
(e.g., a hard disk drive (HDD), solid state drive (SSD), or
random access memory (RAM)) can store one or more of the
application 205, the DRD runtime library 210, or the kernel
240. The processor 250 can communicate with the computer
storage device 270 via one or more buses.

An analysis module 235 can interpret the PMU sampling
data and the instrumentation data to determine whether there
is a data race condition. In some cases, a data race occurs
when multiple threads access the same location, one or more
of'the threads does so without proper synchronization, and at
least one of the accesses is a write. The analysis module 235
can perform memory address computations, optimizations,
and data race detection. In some implementations, the analy-
sis module 235 can use an assembly level analysis to compute
final memory address from register value states.

FIG. 3 shows an example of a data race detection process.
A data race detection process runs threads of a multithreaded
program on a processor, the program being configured to
produce locksets each of which indicate a set of one or more
locks that a thread holds at a point in time (305). Running
threads of a multithreaded program can include running an
instrumented version of the program that provides notifica-
tions such as a lock notification, an unlock notification, a
memory allocation notification, and a memory de-allocation
notification. Other notifications are possible. The process
causes a PMU included in the processor to monitor memory
accesses caused by the threads and to produce samples based
on the memory accesses, the samples being indicative of an
accessed memory location (310). For example, the process
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can write a pre-determined value to a processor register to
trigger the PMU to start producing samples.

The data race detection process detects an existence of a
data race condition based on the samples and the locksets
(315). Detecting an existence of a data race condition can
include identifying a protected access to a memory location
by a first thread of the threads and identifying an unprotected
access to the memory location by a second thread of the
threads. The process selectively outputs an indication of the
data race condition (320). Outputting an indication of the data
race condition can include displaying a visual warning, high-
lighting, in a code browser window, program instructions that
are associated with the data race condition, writing a log
message to a file, or a combination thereof. In some imple-
mentations, detecting an existence of a data race condition
can include aggregating performance monitoring unit data
generated by running multiple instances of an application.

A data race detection process can perform offline analysis
to determine addresses for additional memory operations that
were not captured. In some implementations, a data race
detection process can determine one or more memory
accesses based on register file information included in a
selected PMU sample and one or more associated basic
blocks of the program, the selected sample corresponding to
a memory reference instruction within the one or more asso-
ciated basic blocks. Register file information can include
values for a processor’s registers. Detecting the existence of
the data race condition can include using the one or more
additional memory accesses.

The data race detection process can obtain memory allo-
cation events associated with the program. Detecting the
existence of the data race condition can include using at least
aportion of the memory allocation events. Obtaining memory
allocation events can include reading a log file with entries
produced form instrumented memory allocation routines.
The process can include controlling a sampling rate of the
PMU based on an overhead parameter. In some implementa-
tions, the sampling rate can be controlled by a writing a value
to a processor register associated with the PMU. The process
can configure a size of a buffer of the performance monitoring
unit to store a single sample such that an interrupt occurs
based on the performance monitoring unit writing a single
sample to the buffer.

A portion of the DRD mechanism can run as a component
of a target application. In some implementations, at least a
portion of the DRD mechanism resides in the same address
space as the target application. A thread create function can be
instrumented to produce a thread create event. Moreover,
each thread can maintain a lockset in its own thread local
storage and update the lockset for each lock or unlock event.
In some implementations, thread libraries support a mecha-
nism for users to traverse all live threads while a program is
running. For example, a DRD mechanism can be enabled on
running threads. To start collecting PMU samples, the DRD
mechanism can register PMU contexts for each thread of the
application by traversing live threads. In some implementa-
tions, the target application includes a toggle routine to toggle
DRD monitoring on or off. For example, the toggle routine,
running within an application, can listen for incoming toggle
commands via a network port.

With DRD monitoring enabled, a thread instrumentation
library can redirect synchronization calls to wrapper func-
tions which update lockset information for each thread. At the
same time, for each thread, a separate sampling information
collecting phase retrieves memory address information
whenever an instruction of that thread is sampled by the
PMU. The PMU is accessed through a kernel system call
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interface. For each sample, the PMU generates processor
interrupts which the kernel eventually transforms into an
asynchronous signal delivered to the user application. In
some implementations, a PMU record the register state of the
processor with each sample. For example, in a first thread, can
take a lock and write operation to memory location X. The
write operation can be sampled by a PMU. The DRD mecha-
nism can output alog record that includes the PMU sample. In
some implementations, the DRD record includes the whole
register value state information together with the currently
held lockset {L} in the signal handler of the first thread. If a
read operation to memory location X with an empty lockset is
sampled by the PMU in a second thread, a DRD mechanism
can generate a warning indicating an unprotected access to
memory location X.

The PMU can be managed by the kernel and can be acces-
sible via a system call interface. In some implementations, a
PMU context can be identified by a file descriptor. Each
thread creates a PMU context at startup. A PMU file descrip-
tor can be used throughout a PMU session to operate on the
PMU. In some implementations, a PMU session is started
based on creating a PMU file descriptor.

In a PMU session, an event and a sampling period are
selected. In some implementations, the Instruction_Retired
event can be used. In the PMU session, sampling buffer sizes
can be configured. The kernel manages a sampling buffer
where samples are saved on PMU interrupts. The application
is notified by a signal based on the buffer becoming full. In
some implementations, DRD mechanism requires the
memory address immediately after an instruction is sampled.
In some implementations, the DRD mechanism uses a large
sized buffer size and only uses the last entry. In some imple-
mentations, the DRD mechanism can set the buffer size to one
(e.g., each PMU sample generates an interrupt because the
buffer can only hold one entry).

Further in the PMU session, a kernel context for monitor-
ing is created. Using the file descriptor, the DRD mechanism
can program an event and sampling period. The file descriptor
can be used to bind the signal to a thread. In the PMU session,
the monitoring can be started. After setting all software and
hardware flags, a separated system call is invoked to start the
PMU monitoring. In some implementations, the system call
sets a special enable bit in the PMU.

Yet further in the PMU session, PMU information can be
read and the monitoring can be restarted. Once the signal
notification is received, it is safe to read the samples directly
in the buffer which is remapped into the user level address
space. During notification, sampling is stopped. It must be
restarted via a specific system call. The sampling period can
be adjusted dynamically. The DRD mechanism can work
within monitored programs, in a self-monitoring way. To
achieve this, the PMU setup and start functions can be incor-
porated into a thread create wrapper function and the PMU
reading and restarting can be added as a new signal handler
function of the program.

When a memory access is sampled by a PMU, a DRD
mechanism can obtain the sampled information via a signal
handler of the monitored program. In some implementations,
the asynchronous signal SIGIO can be used for signal deliv-
ery of PMU interrupts. The signal should be dispatched
immediately after the hardware interrupt happened to aide in
combining an aligning lockset data and memory access data.
In some implementations, the signal is required to be dis-
patched to the thread in which the sample was captured.

A sampling based analysis method potentially misses
information. For data race detection this means that memory
accesses are only caught with a certain probability, there is no
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guarantee that a specific memory reference will be sampled.
For the sampling based DRD techniques, a fundamental ques-
tion to consider is this: given a fixed sampling period T and a
dynamic instruction stream {I;, I, . . . I, . .., I}, if two
memory accesses involved in a race occur m and n times in the
stream, respectively, what is the probability to catch both
memory references at least once? To answer this question, we
first compute the total number of samples as t=s/T. The prob-
ability P for catching a memory reference at least once is:

Com*Con = Comn &

s—n

Ct

s

1-fi-2f-{1- 2 -2

There are two assumptions for the approximation: The total
number of instructions s is much larger than m and n, and the
instructions are sampled independently. The first assumption
is easy to understand because racy memory accesses only
occupy a small part of the total instructions. The sampling
period can be dynamically adjusted to model the indepen-
dence of each sample event. As an application of the above
equation, for the pair {s=1,000,000,000, T=200,000,
m/s=0.01%, n/s=0.01%]}, t is computed to be 5000 and the
final probability is 15.5%. Equation (1) indicates directions to
increase the probability: (i) increase m/s and n/s or (ii) enlarge
t. Given a fixed total number of instructions s, the former tells
us that if we can get more occurrences for each racy memory
access, the probability is increased. The latter shows that the
probability can be increased by increasing t by increasing s or
reducing T.

As equation (1) shows, an intuitive way to increase the
probability is to reduce the sampling period, getting more
samples overall. However, the overhead of sampling is pro-
portional to the number of hardware interrupts. The shorter
we set the sampling period, the larger the number of hardware
interrupt will be, and with it the runtime overhead as well. A
DRD mechanism can dynamically adjust the sampling period
according to an overhead budget. An overhead budget can be
set by a performance based requirement for an application.
For example, a user can configure an overhead budget param-
eter to be no larger than 10% of original application perfor-
mance. In some implementations, the DRD mechanism can
reduce the sampling period based on overhead budget. In
some implementations, the DRD mechanism can obtain two
samples for one hardware interrupt.

FIGS. 4A and 4B show an example of a signal skid prob-
lem. FIG. 4A shows an example of the layout of the signal
skid problem. Operations 405 of PMU can include triggering
abuffer counter overflow, sample recording, and triggering an
interrupt delivery of one or more PMU signals. A signal
handler mechanism, in some implementations, can produce
two samples for each hardware interrupt. In a signal skid
problem, if the retirement of instruction m causes a counter
overflow, PMU may not record the information at once until
the next instruction retired event occurs. PMU will can record
the register values for instruction m+l. After the sample
recording, the PMU hardware logic can generate a hardware
interrupt immediately and user threads can be suspended.
There can be latency between instruction m+l and the place
where user level code finally receives the signal.

FIG. 4B shows an example of a code sequence example to
further show the signal skid problem. In the case when IP1 is
instruction m+l, the signal can be received at IP2, in this case,
the lockset at these two places are different. The situation is
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same when the m+1 is IP3 but the signal comes in at or after
1P4. To overcome this problem, one or more NOPs (no-op
operations) can be inserted in the lock/unlock instrumenta-
tion code to ensure that samples of instructions outside of
critical section will not skid into the critical section and
samples of instructions inside critical section will not bypass
the unlock operations. Inserting NOPs can produce overhead;
however, the inserted NOPs can increase the number of
samples that are collected. Thatis, while PMU maintains a set
of register states for m+1, the OS also maintains another set of
register states for the instruction when it is suspended by
kernel. These two sets of register states should be same if
there is no signal skid problem. If there is a signal skid
problem, we may get two sets of register states.

Another technique for increasing the probability of detec-
tion is by increasing the number of sampled instructions via
offline static instruction simulation. A DRD mechanism can
perform offline analysis to compute the final memory address
based on the set of register states. The DRD mechanism can
perform static instruction simulation based on the current
register states. Static instruction simulation is conducted
based on static data flow analysis. Based on a set of registers
value for an instruction i, the mechanism can use these reg-
isters value to compute memory address for another instruc-
tion j if the registers are not invalidated between i and j. For
instance, based on sampling IP1 in FIG. 4B, the DRD mecha-
nism can use, for example, the register value of rax at the IP1
to compute memory address of instruction at IP2 through
forward computation, given that the value of register rax is not
killed by the instruction at IP1. Based on obtaining the reg-
isters value state for the instruction at IP3, the DRD mecha-
nism can compute the memory address of instruction at IP2
through backward computation. The DRD mechanism can
perform forward and backward memory address computa-
tions within a basic block boundary. In some implementa-
tions, a PDU data collection mechanism can use a branch
trace buffer (BTB) to retrieve branch taken and instruction
retired information to increase the probability of detecting
data race conditions. In some implementations, the DRD
mechanism can perform supports forward and backward
memory address computation within multiple basic blocks
using branch information, such as branch-taken or branch-
not-taken information.

Still another technique for increasing the probability of
detection is by increasing the total number of instructions,
aggregating samples, or both. Typical server applications are
running for a long time once they have been deployed. For
example, a multithreaded http server process can be config-
ured to run one listener thread and large number of worker
threads. The listener thread is responsible for listening to the
incoming requests and dispatching the tasks into worker
threads. In that case, the worker threads execute the same
sequences of binary code. In other words, more queries the
server received, more times an instruction will be executed. In
a production environment, the same multithreaded program
may be deployed on tens or hundreds of machines. In that
case, after aggregating large number of samples from long
time constantly monitoring on different machines, the prob-
ability of detecting a data race can be increased based on
aggregating samples from multiple instances of the same
application.

The performance of a DRD mechanism can be evaluated.
Experiments were conducted on a machine with a 2.40 GHz
Intel Core 2 Q6600 processor, and 4 GB of memory, that is
configured to run a Linux kernel, version 2.6.30, with a per-
fmon?2 kernel patch. As shownin Table 1, multiple versions of
applications with known data races were evaluated including
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aweb server (Apache httpd), a database server (MySQL.), and
a Test benchmark. The Test benchmark includes a loop and
each iteration of the loop contains a global variable access
among a large number of instructions. Seven bugs from the
applications were extracted as shown in Table 1. For each
race, we classify it into 3 categories: Harmful, Benign, and
False. For the httpd server, its performance testing script ab
can be used as the client to generate queries. For the mysqld
server, its testing script under mysql-test can be used to pro-

10

instructions executed to expose that race. The EUA can be
matched with several runtime paradigms. For example, a
worker thread of http server executes the same sequence of
instructions when serving queries where we treat the number
of executed instructions to serve a http query as an EUA. The
Test benchmark includes a loop and each iteration of the loop
contains a global variable access among a large number of
instructions. In that case, the DRD mechanism can treat the
number of instructions for a single iteration as an EUA. How-

duce detection inputs anq the? script under sql_bench can be 10 ever, some races can only be exposed by executing several
used as the overhead testing input. EUA for different threads. In some cases, the EUR can be a
multiple of EUA. The DRD mechanism can use an external
TABLE 1 PMU tool to obtain the value of EUA for a specific applica-
Known Bugs. 15 tion. The EUR can be to compute the m/s and n/s in equation
(1). For example, for a httpd bug, the length of the EUR is
Bench  BugNo Type Description 50,000 instructions and only one occurrence of a racy
Test 1 Benign  update the same global variable in two memory access is inVOlV,ed in this EUR’ this yield,s a
threads m/s=0.002%. Note that this number will not change since
httpd 1 Harmful Bug id: 44402, race in fdqueue.c both n and s will increase consistently based on running the
program longer.
TABLE 2
Overall Detection Results for T = 200,000.
Experiment Running result
EUR Unit Theoretical [ Offline
Bugs (instructions) m/s, n/s (samples) result Base Sample  Ext.
Test 80,000 0.00125%,0.00125% 10,000 1.4% 1% 3% 7%
httpd-1 1,000,000  0.0001%, 0.0001% 8,000 0.6% 1% 3% 4%
httpd-2 50,000 0.002%, 0.002% 8,000 2.1% 1% 3% 5%
httpd-3 50,000 0.002%, 0.002% 6,000 13% 2% 4% 4%
mysqld-1 120,000 0.0008%, 0.0008% 20,000 21% 2% 4% 9%
mysgld-2 80,000 0.00125%,0.00125% 10,000 1.4% 1% 2% 3%
mysgld-3 80,000 0.00125%,0.00125% 10,000 14% 3% 6% 8%
TABLE 1-continued Based on the evaluation methodology, Table 2 provides the
overall Detection Result for T=200,000. The ratios of m/s and
Known Bugs. 40 /s are the proportions for racy memory accesses among total
Bench  BugNo Type Description instructions. The Experiment Unit is defined based on the
: — number of samples that is equal to s/T. The OS Sample is an
g Blf;l;%“ updatlfa f:ggzsstii;gfj:;d :3) xocrker'c optimization that can produce an additional sample in the OS
mysqld 1 Harmful Bug id: 28249 ' in addition to the PMU sample. The Offline Ext. result is
2 Benign Benign race for function 45 reported by adding the OS sample optimization. With special
5 False . a.lSeS;a:SSittlif/g;nilenrilllgck.c input and custom thread schedgler, in theory, these 1F)ugs can
be caught by a full instrumentation based race detection tech-
nique. However, the DRD mechanism can catch data race
To evaluate the performance of a DRD mechanism, experi- conditions with a probability. The OS Sample column
ments are designed based on the following evaluation meth- 50 denotes the result after applying the optimization that can get
odology. The following four steps can be repeated for each another sample from OS in addition to the PMU sample. The
data race bug: (1) characterize a bug, (2) determine an Experi- Offline Ext column reports the result for offline sample exten-
ment Unit, (3) run experiments and determine the experiment sion optimization. From the result, the DRD mechanism can
probability, and (4) evaluate the effect of optimizations. An catch bugs with a close probability to theoretical result. The
Experiment Unit is defined based on the number of obtained 55 values of m/s and n/s for most of studied bugs are around
samples, e.g., the t in equation (1). The DRD mechanism can 0.001%, which means every 100,000 instructions will
run the program longer to get more samples. For example, for execute racy memory accesses once. Take httpd-2 bug as an
httpd and mysqld server, the DRD mechanism can make them example, for each query in one thread, they will execute the
serve more requests from clients. The experiments include racy memory access once. Such proportional values of m/s
repeating the Experiment Unit several times and each of the 60 and n/s indicates that the two racy memory accesses should
Experiment Units will report if it catches the race or not. both locate in hot regions. A data race with hot-hot pattern can
For characterizing a bug, a metric Execution Unit denotes be caught by a DRD mechanism. A DRD mechanism can use
a sequence of dynamic instructions. Execution Unit for an increase monitoring time to potentially detected data races
application and a data race are defined separately. The Execu- with a hot-cold pattern.
tion Unit for an application (EUA) denotes the total number 65  FIG. 5 show the breakdown of different types of overheads

of instructions executed to finish a unit task, while the Execu-
tion Unit for a data race (EUR) denotes the total number of

associated with a data race detection mechanism. For three
different benchmarks, the graph 505 of FIG. 5 shows different
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types of overhead such as a sampling adjust overhead, an OS
sample overhead, memory allocation overhead, lockset over-
head, and signal handler overhead. The average slow down at
T=200,000 is 2.8% which is practical for production usage.
Note that, at T=20,000, the slow down quickly increases to
30%.

As shown by the graph 505, the overhead of runtime moni-
toring mainly comes from two parts: lockset instrumentation
and signal delivery. Out of these two, signal handler process-
ing is the major source of overhead. Signal handler process-
ing requires several OS system calls to interrupt user level
code and read the information from OS kernel and hardware.
The overhead of sampling adjust is moderately high because
it invokes system calls to set the hardware control bits. The
OS sample incurs a very small overhead. The overhead of
lockset instrumentation is determined by the lock usage of
different benchmarks. Since mysqld uses much more locks to
protect concurrent accesses of the same table, its overhead is
higher than the other two benchmarks. The Test benchmark
includes a number of lock/unlock and memory allocation
functions to study the breakdown of the overhead.

FIG. 6 shows an example of throughput performance for a
benchmark application being monitored by a data race detec-
tion mechanism. In this example, the benchmark application
is httpd. The input is fixed at 100,000 requests in total. The
graph 605 of FIG. 6 shows the throughput for different sam-
pling periods, where the x-axis is the sampling period and
y-axis is the throughput result, e.g., requests per second. The
graph 650 shows that the overhead, as reflected by through-
put, is nearly linear with sample period. This is because the
overhead is mainly determined by the number of hardware
interrupts which is controlled by sampled period as the graph
505 of FIG. 5 shows.

FIG. 7 shows another example of throughput performance
for a benchmark application being monitored by a data race
detection mechanism. In this example, the benchmark appli-
cation is httpd and the sampling period is fixed with T=200,
000. The graph 705 of FIG. 7 shows the throughput for
different number of threads running in the benchmark appli-
cation, where the x-axis is the number of threads and the
y-axis is the throughput result, e.g., request per second. The
graph 705 of FIG. 7 shows the base performance of the
benchmark application (“BASE”) and the DRD instrumented
version of the benchmark application (“DRD”). Typically, a
large server application will initialize large number of threads
during startup and put them into a thread pool for later use.
The result in FIG. 7 shows that the number of threads as
minimal impact for the performance of a DRD mechanism.
This is because PMU only affects scheduled threads. If one
thread is switched out by kernel and does not run on any of
cores in CPU, the PMU will not sample it. The final number
of hardware interrupts is only determined by the number of
concurrent running threads on CPU which is again controlled
by the number of physical CPU cores. Using one or more
kernel modules to maintain a context for each thread, a DRD
mechanism may require increased OS kernel resources, such
as locked memory, in order to monitor applications which
have a large number of threads.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifica-
tion and their structural equivalents, or in combinations of one
or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more modules of com-
puter program instructions, encoded on computer storage
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medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer
storage medium is not a propagated signal, a computer stor-
age medium can be a source or destination of computer pro-
gram instructions encoded in an artificially-generated propa-
gated signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field program-
mable gate array) or an ASIC (application-specific integrated
circuit). The apparatus can also include, in addition to hard-
ware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database management
system, an operating system, a cross-platform runtime envi-
ronment, a virtual machine, or a combination of one or more
of them. The apparatus and execution environment can real-
ize various different computing model infrastructures, such
as web services, distributed computing and grid computing
infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, object, or
other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or por-
tions of code). A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
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receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Posi-
tioning System (GPS) receiver, or a portable storage device
(e.g., auniversal serial bus (USB) flash drive), to name just a
few. Devices suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD-
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated in, special purpose
logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com-
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN), an inter-network
(e.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g.,an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.
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While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments of particular inventions. Certain features that
are described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A method performed by data processing apparatus, com-
prising:

running two or more threads of a multithreaded program on

a processor, the program being configured to:

produce locksets, each of which indicate a set of one or
more locks that a thread holds at a point in time; and

cause a hardware implemented performance monitoring
unit included in the processor to 1) monitor memory
accesses caused by the threads, ii) produce samples
based on the memory accesses, each sample indicat-
ing an accessed memory location, wherein a sampling
rate of the samples is controlled based on an overhead
parameter, and iii) produce a separate processor inter-
rupt for each sample;

aligning, using each separate processor interrupt produced

for each sample by the performance monitoring unit, the

samples produced by the performance monitoring unit
with locksets produced by the program; and

determining an existence of a data race condition based on
the samples and the locksets, the determining compris-
ing:

(1) identifying, from a first lockset of the locksets and a
first sample of the samples produced for a first thread
of the two or more threads, a protected access, by the
first thread, to a memory location indicated by the first
sample;

(i1) identifying, from the first lockset and a second
sample ofthe samples produced for a second thread of
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the two or more threads, an unprotected access, by the
second thread, to the memory location indicated by
the second sample; and

(iii) determining the data race condition exists based on
the identified protected access and the identified
unprotected access; and

selectively outputting an indication of the data race condi-

tion.

2. The method of claim 1, further comprising:

selecting a sample of the samples;

determining one or more additional memory accesses

based on (i) register file information included in the
selected sample and (ii) one or more associated basic
blocks of the program, the selected sample correspond-
ing to a memory reference instruction within the one or
more associated basic blocks, wherein detecting the
existence of the data race condition comprises using the
one or more additional memory accesses.

3. The method of claim 1, further comprising:

obtaining memory allocation events associated with the

program, wherein detecting the existence of the data
race condition comprises using at least a portion of the
memory allocation events.

4. The method of claim 1, further comprising:

configuring a size of a buffer of the performance monitor-

ing unit to store a single sample such that each processor
interrupt occurs based on the performance monitoring
unit writing a single sample to the buffer.

5. The method of claim 1, wherein running the threads
comprises running multiple instances of the application on
one or more servers, and wherein detecting the existence of
the data race condition comprises aggregating performance
monitoring unit data generated by running the multiple
instances of the application.

6. A system, comprising:

a computer storage device having instructions stored

thereon; and

a processor coupled to the computer storage device, the

processor comprising a performance monitoring unit,
wherein the instructions, when executed by the processor,
cause the processor to perform operations comprising:
running two or more threads of a multithreaded program
on a processor, the program being configured to:
produce locksets, each of which indicate a set of one
or more locks that a thread holds at a point in time;
and
cause a hardware implemented performance monitor-
ing unit included in the processor to i) monitor
memory accesses caused by the threads, ii) produce
samples based on the memory accesses, each
sample indicating an accessed memory location,
wherein a sampling rate of the samples is con-
trolled based on an overhead parameter, and iii)
produce a separate processor interrupt for each
sample;
aligning, using each separate processor interrupt pro-
duced for each sample by the performance monitoring
unit, the samples produced by the performance moni-
toring unit with locksets produced by the program;
and
determining an existence of a data race condition based
on the samples and the locksets, the determining com-
prising:
(1) identifying, from a first lockset of the locksets and
a first sample of the samples produced for a first
thread of the two or more threads, a protected
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access, by the first thread, to a memory location
indicated by the first sample;

(i) identifying, from the first lockset and a second
sample of the samples produced for a second thread
of the two or more threads, an unprotected access,
by the second thread, to the memory location indi-
cated by the second sample; and

(iii) determining the data race condition exists based
on the identified protected access and the identified
unprotected access; and

selectively outputting an indication of the data race con-
dition.

7. The system of claim 6, the operations further compris-
ing:

selecting a sample of the samples;

determining one or more additional memory accesses

based on (i) register file information included in the
selected sample and (ii) one or more associated basic
blocks of the program, the selected sample correspond-
ing to a memory reference instruction within the one or
more associated basic blocks, wherein detecting the
existence of the data race condition comprises using the
one or more additional memory accesses.

8. The system of claim 6, the operations further compris-
ing:

obtaining memory allocation events associated with the

program, wherein detecting the existence of the data
race condition comprises using at least a portion of the
memory allocation events.

9. The system of claim 6, the operations further compris-
ing:

configuring a size of a buffer of the performance monitor-

ing unit to store a single sample such that each processor
interrupt occurs based on the performance monitoring
unit writing a single sample to the buffer.

10. The system of claim 6, wherein running the threads
comprises running multiple instances of the application on
one or more servers, and wherein detecting the existence of
the data race condition comprises aggregating performance
monitoring unit data generated by running the multiple
instances of the application.

11. A non-transitory computer readable medium encoded
with a computer program, the program comprising instruc-
tions that when executed by data processing apparatus cause
the data processing apparatus to perform operations compris-
ing:

running two or more threads of a multithreaded program on

a processor, the program being configured to:

produce locksets, each of which indicate a set of one or
more locks that a thread holds at a point in time; and

cause a hardware implemented performance monitoring
unit included in the processor to 1) monitor memory
accesses caused by the threads, ii) produce samples
based on the memory accesses, each sample indicat-
ing an accessed memory location, wherein a sampling
rate of the samples is controlled based on an overhead
parameter, and iii) produce a separate processor inter-
rupt for each sample;

aligning, using each separate processor interrupt produced

for each sample by the performance monitoring unit, the
samples produced by the performance monitoring unit
with locksets produced by the program; and
determining an existence of a data race condition based on
the samples and the locksets, the determining compris-
ing:
(1) identifying, from a first lockset of the locksets and a
first sample of the samples produced for a first thread
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of the two or more threads, a protected access, by the
first thread, to a memory location indicated by the first
sample;

(i1) identifying, from the first lockset and a second
sample of the samples produced for a second thread of
the two or more threads, an unprotected access, by the
second thread, to the memory location indicated by
the second sample; and

(iii) determining the data race condition exists based on
the identified protected access and the identified
unprotected access; and

selectively outputting an indication of the data race condi-
tion.

12. The computer readable medium of claim 11, the opera-

tions further comprising:

selecting a sample of the samples;

determining one or more additional memory accesses
based on (i) register file information included in the
selected sample and (ii) one or more associated basic
blocks of the program, the selected sample correspond-
ing to a memory reference instruction within the one or
more associated basic blocks, wherein detecting the
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existence of the data race condition comprises using the
one or more additional memory accesses.

13. The computer readable medium of claim 11, the opera-
tions further comprising:

obtaining memory allocation events associated with the

program, wherein detecting the existence of the data
race condition comprises using at least a portion of the
memory allocation events.

14. The computer readable medium of claim 11, the opera-
tions further comprising:

configuring a size of a buffer of the performance monitor-

ing unit to store a single sample such that each processor
interrupt occurs based on the performance monitoring
unit writing a single sample to the buffer.

15. The computer readable medium of claim 11, wherein
running the threads comprises running multiple instances of
the application on one or more servers, and wherein detecting
the existence of the data race condition comprises aggregat-
ing performance monitoring unit data generated by running
the multiple instances of the application.
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